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Understanding variability of population abundances is of central concern to theoretical and applied evolutionary
ecology, yet quantifying the conceptually simple idea has been substantially problematic. Standard statistical
measures of variability are particularly biassed by rare events, zero counts and other ‘non-Gaussian’ behaviour,
which are often inappropriately weighted or excluded from analysis. I conjecture that these problems are
primarily a function of calculating variation as deviation from an average abundance, while the average may not
be static, nor actually reflect abundance at any point in the time series. Here I describe a simple metric
(population variability PV) that quantifies variability as the average percent difference between all combinations
of observed abundances. Zero counts can be included if desired. Similar to standard metrics, variability is
measured on a proportional scale, facilitating comparative applications. Standard metrics are based on Gaussian
distributions, are over-sensitive to rare events and heavy tailed behaviour, and can inappropriately indicate ‘more
time-more variation’ effects (reddened spectrum). Here I demonstrate that, while PV behaves similarly for
‘normal’ time series, it is independent of deviation from mean abundance for heavy tailed distributions, its
robustness to non-Gaussian behaviour resolves artificial reddened spectrum issues, and variability calculated
using PV from short time series is substantially more accurate at estimating known long term variability than
standard metrics. PV therefore provides common ground for evaluating the variability of populations
undergoing different dynamics, and with different statistical distributions of abundance, and can be easily
generalized to a variety of contexts and disciplines.

The importance of summarizing variability in popula-
tion abundances is ubiquitous throughout evolutionary
ecology, particularly in comparing population dynamics
and evaluating extinction risk. There is general agree-
ment such a metric be unit free and independent of the
mean (i.e. measured on a proportional scale) to
facilitate comparison (Pimm 1991, Gaston and McAr-
dle 1994, McArdle and Gaston 1995, Inchausti and
Halley 2002). As variance related to the mean (Taylor
1961), common techniques to calculate variability
standardize logarithmically (standard deviation SD of
the log transformed abundances; SDL�/SD[log(N)]),
or arithmetically (coefficient of variation CV�/SD/
mean). Of course, normalizing for mean population
size does not exclude variability related to density

dependent processes (this is often confused in the
literature; Gaston and McArdle 1994).

SDL and CV are the most accepted variability
metrics in ecology, being used for a variety of
spatiotemporal comparisons. Although they measure
variation on a proportional scale, they are not always
independent of the mean (McArdle et al. 1990), and
can be seriously biassed by a number of issues,
including zero counts, rare events and other ‘non-
Gaussian’ behaviour of populations. Different charac-
teristics and biases of SDL and CV suggest different
scenarios may require different indices (Pimm 1991,
McArdle and Gaston 1995), however this inhibits
comparison, which is often the primary objective. It is
therefore desirable a single metric be both applicable
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and consistent across a wide range of scenarios. Many of
these issues have been succinctly reviewed elsewhere
(McArdle et al. 1990, Pimm 1991, Gaston and
McArdle 1994).

Here I propose a technique for quantifying varia-
bility which is based on a conceptual approach of
simply comparing all numbers in the time series.
Statistical approaches first assume a particular form of
distribution (e.g. ‘normal’), calculate a measure of
central tendency (e.g. mean) and subsequently calculate
variation as average deviation from this ‘central’ value of
population abundances (or the log transformation).
While these statistical measures can also be calculated
without using the time series mean (i.e. by using mean
sum of squared differences), the proof of the equiva-
lence of these approaches indicates that average devia-
tion from the mean still underlies the metric, regardless
of how it is calculated. I propose issues of non-Gaussian
behaviour can be alleviated by simply comparing all
numbers in the time series, and calculating average
proportional difference. That is, instead of calculating
variability as average deviation from average population
size, variability of biological populations may be better
described as average difference in abundance among
years. I begin by discussing why standard statistical
approaches are problematic for situations not meeting
Gaussian assumptions. I then present the proposed
method, ‘population variability’ PV describe several of
its mathematical characteristics, and quantitatively
illustrate that it behaves as desired: for ‘normal’
(Gaussian) time series, PV tightly corresponds to
current statistical techniques (CV and SDL). However,
instead of evaluating variability based on deviation from
an arbitrary mean, PV more fairly treats both ‘rare’ and
‘common’ events by simply comparing all abundances
relative to each other. Therefore, unlike standard
statistical techniques, PV allows comparisons across a
range of different dynamics and is robust to non-
Gaussian behaviour, which I illustrate quantitatively
using spectral analysis and simulation models.

Biological poulations and Gaussian assumptions

Temporal variability has been defined as ‘average
deviation of a time series of abundances from an
average value on a proportional scale’ (Gaston and
McArdle 1994). Both SDL and CV therefore assume
that an average value of population size, and deviation
from it, appropriately describe features of the popula-
tion we are attempting to measure. While potentially
suitable for some analysis, the validity of this assump-
tion in reflecting stability/variability of biological
populations is not clear. With the possible exception
of populations driven by a stable equilibrium, deviation
from an average abundance may not represent the

underlying dynamics which biologists are trying to
capture when measuring variability. This could be
particularly true if populations undergo cyclical dy-
namics or more complex behaviour. To properly
facilitate comparisons among populations undergoing
different dynamics, an index of variability should be
robust to both ‘normal’ and non-Gaussian behaviour.

Even for relatively stable populations, deviation from
average may not represent the variation ecologists are
interested in. For example, consider a stable population
that undergoes rare perturbations (e.g. a crash due to
extreme environmental events, followed by quick re-
bound to carrying capacity via local production or
emigration). In such scenarios, the mean will not reflect
population size in ANY year, and variability calculated
using SDL or CV will indicate deviation from the mean
and therefore variability in ALL years (Fig. 1). As I will
illustrate, if variability is measured by simply comparing
abundance among all time steps (circles in Fig. 1), then
like all events, rare events are naturally compared to
every other event, rather than to an arbitrary Gaussian
mean. This is intuitively appealing as rare events are by
definition not Gaussian, but are expected to be
important components of ecological systems, whereas
most statistical approaches treat them as outliers and
devise ways to exclude them. We can therefore consider
‘rare’ and ‘common’ as parts of a continuum of the
underlying dynamics, rather than being discretely and
arbitrarily defined (e.g. as a cutoff threshold for ‘out-
liers’, based on the inappropriate assumption of a
Gaussian distribution).

As a further thought experiment, consider a stable
population at a carrying capacity of 100 for 25 years
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Fig. 1. For a population constant in abundance (circles) every
year, except a few rare events, the mean (dashed line) does not
reflect population size in any year, and variability quantified
based on deviation (shaded area) implies variability in ALL
years. Variability metrics that assume population abundances
tend to fluctuate about a mean are therefore inappropriately
sensitive to rare events.
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that undergoes an sudden shift, due to some abrupt
environmental change, but subsequently remains stable
at a new carrying capacity of 10 for the next 50 years.
Following this, it then returns to the old carrying
capacity of 100 for 25 more years. A standard statistical
approach would base variability on deviation in each
year from a mean of 55 individuals, an abundance
which is never achieved by the population, lies halfway
between the bimodal distribution of abundances, there-
fore implies high variability in every year, and results in
an extremely high value of variability (CV�/0.82;
SDL�/1.16). In contrast, a comparison of all abun-
dances indicates stability in 40% of comparisons, and
more reasonable measure of variability, PV�/0.45. Of
course, the same bimodal distribution of abundances
and these same variability scores (PV, CV and SDL)
would be obtained for a population oscillating between
these two carrying capacities (100,10) every year (Note
that, while the magnitude of difference between the two
carrying capacities will determine the actual variability
scores, in fact, exactly these same PV, CV, SDL scores
will be obtained whenever the two carrying capacities
differ by an order of magnitude). The chronology of
events doesn’t particularly matter for the type of
variability we are discussing, we are only considering
the events themselves; however, the time scale of
censussing could be quite important in evaluating these
two similar scenarios. Time series analysis would be
necessary if the chronology of events are of interest.

To illustrate the effects of normal ‘Gaussian’
behaviour, rare events, a heavy-tailed (Cauchy) distri-
bution, and a bimodal distribution of abundances on
measures of variability Figure 2 summarizes 1000
randomizations of time series (100 intervals), for each
of seven different simulations comparing CV, SDL and
PV. For normal ‘Gaussian’ populations (abundances
drawn randomly from a normal distribution of mean�/

100; SD�/5 or 25), each variability metric similarly
reflects the degree of stability over time. However, for
stable normally distributed populations mean�/100;
SD�/5) undergoing rare events (crash to mean�/10;
SD�/5) at a frequency of 0.02, 0.05 and 0.1, CV and
particularly SDL show exaggerated increases in varia-
bility. Similarly, for the heavy-tailed Cauchy distribu-
tion (limited to positive values, location parameter�/

100, scale parameter�/5), SDL and particularly CV
show extreme exaggerated variability. Finally, simulat-
ing the thought experiment of a changing carrying
capacity/bimodal distribution of abundances (stable at
mean 100; SD�/10 for 50 years and mean 10, SD�/1
for the remaining 50 years) indicates mean PV�/0.5
while CV and SDL inappropriately indicate extreme
variability, even though the population was stable half
the time. The biases inherent in standard statistical
metrics (CV,SDL) are certainly clear. Following deve-
lopment of the PV technique, I will more formally

compare these metrics and quantitatively illustrate that
PV is more robust to different underlying dynamics
and provides a more accurate measure of a biological
concept of variability.

Calculation of population variability PV

Empirical time series of population abundances are
usually discrete, a census being conducted at each time
step. Sampling design and the grain (resolution) and
extent (scope) of a data set determine the spatiotem-
poral scales of which it is representative. Measured
abundances will include variability due to a variety of
sources including sampling error, however this is an
issue beyond the scope of this paper (e.g. Stewart-Oaten
et al. 1995). To calculate variability in an intuitive
manner, we can simply calculate the average propor-
tional differences between all abundances in the time
series. While comparing all pairs in a time series can be
qualitatively redundant (because e.g. a�/b and b�/c
tells us a�/c) these comparisons are not quantitatively
redundant. As we wish to quantitatively evaluate each
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Fig. 2. Comparison of CV, SDL and PV across 7 simulations
of population change for time series of 100 intervals. Each
simulation was conducted 1000 times. For the first 2
simulations, ‘normal’ populations were generated by ran-
domly drawing abundance from a normal distribution of
mean�/100; standard deviation (SD)�/5 and 25, respec-
tively. Rare events were simulated by selecting abundances
from a stable distribution (mean�/100; SD�/5) but letting
the population crash (mean�/10; SD�/5) at three frequencies
(0.02, 0.05, 0.10), and by using the heavy tailed Cauchy
distribution (location�/100, scale parameter�/5). The final
simulation constructed bimodal time series of abundance,
stable at mean�/100; SD�/10 for 50 years and mean 10,
SD�/1 for the remaining 50 years, to illustrate the effects of
an abrupt shift in carrying capacity or cyclical dynamics. Error
bars are 95% confidence intervals. See text for further
explanation.
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value of abundance relative to every other value of
abundance, similar to metrics like Kendall’s test for
trend, we consider all possible combinations of abun-
dance (C) which can be calculated from the number of
time steps n in the time series as:

C�
n(n � 1)!

2
(1)

We can then define z as the list of these possible pair-
wise comparisons; therefore z�/1 . . . C). Each z there-
fore represents a pair of time steps zi and zj to be
compared by the difference function D(z). This func-
tion simply calculates proportional difference between
each z pair of abundances:

D(z)�

0 if zi�zj

ABS(zi � zj)

MAX(zi; zj)
if zi"zj

8><
>:

(2)

Using absolute value of the difference between zi and zj

divided by the larger number simply ensures the
proportion is the same even if we switch the values of
zi and zj. That is, if zi�/10 and zj�/100, D(z)�/90/
100�/90%, and likewise if zi�/100 and zj�/10, D(z) is
still 90/100�/90% (and not e.g. 90/10�/900%). It is
established that comparisons of absolute values, such as
mean absolute deviation, provide more robust estima-
tors (Press 1989). PV similarly uses absolute compar-
isons of abundance, however instead of standardizing
using deviation from the mean, Eq. 2 standardizes by
calculating the proportional difference between each
value of abundance, i.e. the difference over the
maximum. In fact, although Eq. 2 represents
the framework in which PV was developed, it can be
algebraically transformed to:

D(z)�1�
min(zi; zj)

max(zi; zj)
(3)

indicating that it is based on a ratio comparison of each
value in the time series. In this manner, abundance at
every time step is compared with that at every other
time step, yielding a distribution of proportional
differences D(z). While it may be interesting to
investigate frequency distributions of D(z) scores,
most often an average will provide an adequate
summary of population variability PV:

PV�

Xz

D(z)

C
(4)

We can therefore calculate variability based on a simple
but thorough comparison of all abundances in a time
series. Equation 2 calculates proportional difference, so
the domain of D(z) and PV is [0, 1] in contrast with

SDL and CV, which, at least in theory, is [0, �).
A score of zero represents complete stability among
years (i.e. 1/PV measures stability), while a value of 1 is
approached as differences in population size approach
infinity.

Like SDL and CV, the chronology of abundances is
irrelevant and in fact, the PV approach quantifies
differences across all time-lags. As chronology is
irrelevant, autocorrelation structure will not influence
the value of PV; the same time series could be randomly
reorganized and lead to the same value of PV. However,
it is noteworthy that sorting time series by abundance,
rather than by time, can provide some insight into the
behaviour of the different variability metrics. In this
manner, trends in the ranked abundances can reflect
underlying variability; for example, if sorted abun-
dances exhibit no trend (constant abundance), then PV
is equal to zero. In contrast, if the sorted abundances
progress geometrically, then PV will approach 1.
Intermediate between these extremes, PV will approach
0.5 when the sorted abundances approach an arithmetic
progression, where the common difference of the
progression and the lowest abundance have the same
value. This can be understood by realizing that, in such
cases, the frequency distribution of pair-wise propor-
tional differences (D(z) scores) will be evenly distrib-
uted. Again, note that because chronology is irrelevant,
populations need not be exhibiting arithmetic or
geometric growth to exhibit these patterns of variability;
a multitude of chronologies including random fluctua-
tion could produce the same pattern of sorted abun-
dances. If prudent to the question, a time series could
be de-trended before PV is quantified, although in
many cases, trend might be considered an important
component of variability. PV only indicates the overall
stability/variability, and formal time series analysis
should also be conducted if chronology of abundances
is important to the question being investigated.

As dictated by the central limit theorem, PV values
sampled repeatedly from a fixed distribution will be
normally distributed. In order to quantify the influence
of sampling error, repeated surveys would have to be
conducted at each time step, to estimate confidence
intervals for PV for a given population. Stewart-Oaten
et al. (1995) discuss techniques to deal with sampling
error, and further discussion is beyond the scope of this
paper. The primary purpose of the PV technique is to
allow comparisons of stability/variability among differ-
ent populations. Given a sample of different popula-
tions, regression or other statistical analysis of PV and
(for example) some ecological factor can be conducted
in the standard manner, given the normal require-
ment that data/residuals meet the assumptions of the
statistical test.

Ideally, there would be some gold standard against
which to test the accuracy of PV. Lack of a ‘true’
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measure of variability precludes direct testing of any
metric, making example analyses using real or popula-
tion model data a relatively uninformative exercise. For
this very reason, it is useful to have several different
metrics in our toolbox which allow us to characterize
different things about a time series, and a comparative
approach can provide significant insight. As an im-
portant first step, it is desirable that PV behave similarly
to CV and SDL for ‘well behaved’ Gaussian time series.
PV, CV and SDL were calculated for 100 time series
simulated with random mean [100,1000] and standard
deviation [0,100] over 100 time steps. Correlation
coefficients were calculated to evaluate concordance
between PV, CV and SDL. This entire process was
repeated 1000 times. PV was strongly correlated with
both CV (mean r�/0.9979/0.001 SD) and SDL (mean
r�/0.9679/0.012 SD). Therefore, PV behaves the same
as CV and SDL for ‘normal’ (Gaussian) populations, as
desired and expected. However, the necessity for an
additional approach and a major advantage of PV is it’s
robustness to non-Gaussian behaviour. I herein discuss
how PV addresses and resolves several issues of non-
Gaussian behaviour associated with CV and SDL.

The issue of zero counts

The presence of zero counts in biological time series is a
major issue, and prevents using SDL as (Log 0) is
undefined (Taylor 1961, McArdle et al. 1990). A first
step is to consider the appropriateness of including
zeros. Including data when the population is absent is
uninformative if variability of the population is of
interest but rather indicates variation of animals at a site
(McArdle and Gaston 1993). In meta-population
contexts, including local extinctions in sub-population
variability could be important, particularly when
evaluating local demographic differences (e.g. source-
sink dynamics; Howe et al. 1991). When including
zeros is important, often an arbitrary constant a is
added (i.e. SD[Log(N�/a)]), however this means
variability is no longer on a proportional scale and is
severely biassed at low abundances (Gaston and
McArdle 1994). PV calculates proportional differences
using Eq. 2 which keeps D(z) defined when either zi or
zj equals zero. Such comparison between ‘extant’ and
‘extinct’ years is the only situation where D(z)�/1;
otherwise D(z) approaches 1 as the difference ap-
proaches infinity. The if condition ensures D(z)�/0
whenever zi�/zj including zi�/zj�/0. If including zeros
is important to the research question, then zi�/zj�/0
can be biologically defined as ‘‘stabily extinct’’. It is
important to note that I have been discussing true zeros:
zeros due to sampling error will require careful
consideration (McArdle and Gaston 1993, Gaston
and McArdle 1994, McArdle and Gaston 1995).

Independent of average deviation from the mean

As mentioned in section 1, even though statistical
measures of variability based on deviation from the
mean can be calculated independent of the mean (i.e.
by using the mean sum of squared differences), the
proof of the equivalence of these approaches indicates
that average deviation from the mean still underlies
these metrics, regardless of how they are calculated.
While no such proof exists for PV, simulations can be
used to determine if PV is correlated with average
deviation from the mean (ADM). Of course, given it
has been demonstrated that PV behaves similar to CV
and SDL for ‘normal’ populations, we would expect it
to be correlated to ADM for Gaussian data, even
though, unlike SDL and CV, it is not fundamentally
based on deviation from the mean. However, for very
non-Gaussian data, such as the heavy tailed Cauchy
distribution, PV should not be correlated with ADM
unless ADM somehow some how underlies PV. (Note
that, although the mean and ADM can be calculated for
any set of numbers/abundances, the mean is actually
undefined for the Cauchy distribution). 100 time series
of 100 units were generated to fit the normal distribu-
tion (mean [1000�4000], SD [10�90]) and the heavy-
tailed Cauchy distribution) location [1000, 5000],
scalar [10, 100]). For each time series, PV, CV and
SDL were calculated, and correlation with ADM was
determined across the 100 time series. This entire
process was repeated 2000 times for each distribution.
Figure 3 indicates, that as expected, each metric is
correlated with average deviation from the mean for the
normal distribution. However, unlike SDL and parti-
cularly CV, PV is not correlated with average deviation
from the mean for the very non-Gaussian Cauchy
distribution. While indirect, and not as elegant as a
mathematical proof, this result indicates that average
deviation from the mean is not an underlying feature
of PV. As discussed previously, this is desirable for
considering ‘rare’ events and comparing populations
undergoing different dynamics, including those exhibit-
ing non-Gaussian patterns of abundance.

Rare events and ‘more time�more variation’

Extreme sensitivity of SDL and CV to rare events has
been recognized as a serious issue (for example, see
Pimm’s (1991) analysis of song thrush populations
which crashed following an extreme winter). While it
may be tempting to exclude such ‘outliers’, this is
undesirable as both rare and common events are
expected to be important in ecology (Halley 1996).
The remainder of this section and the next deal with
devising a quantitative way to illustrate that PV is a
more ‘robust’ measure than CV or SDL, in that it
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functions more appropriately across time scales, and is
not over-sensitive to rare events, but rather handles
them in a fair and desirable manner.

An exciting recent line of research is focussed on
investigating coupling between environmental and
biological variation with important implications for
understanding responses to environmental change.
Many physical processes show scaling relationships
with time, exhibiting more variation as time scale
increases (Steele 1985; this has been termed spectral
‘reddening’, with analogy to visible light, to reflect the
dominant importance of low frequency processes;
Schneider 1994, Halley 1996). It has therefore been
of interest to ask if reddened physical processes can
force more time�more variation effects in ecological
systems, in contrast to common assumption that
ecological stochasticity follows a white-noise model
(equal contribution across frequencies).

More time�more variation (reddening) of popula-
tion abundances has been observed across a wide variety
of taxa (Pimm and Redfearn 1988, Arino and Pimm
1995, Cyr 1997, Inchausti and Halley 2002) often
using SDL or CV to measure variability. However, rare
events can produce reddening in otherwise stationary
time series (Mandelbrot 1999, Inchausti and Halley
2002). Spectral analysis more accurately evaluates red-
dening and therefore provides a gold standard against
which to compare and evaluate the robustness of SDL,
CV and PV. Therefore, time series of stable populations
undergoing rare events were generated for 100 time

steps. Abundance at each time step was randomly
selected from normal distributions of known mean and
standard deviation. Rare-crashes (stable at 1009/5,
crashed to 109/5) were simulated for 1000 time series,
and rare-outbursts (stable at 109/5, outburst to 1009/

5) for an additional 1000 time series. Rare events were
set to occur at a frequency of 0.02, 0.05 and 0.1. An
additional 2000 time series were simulated to fit the
heavy tailed Cauchy distribution (random location
parameter [1000,5000]; random scale parameter
[10,100]). For each randomization (8000 time series),
variability was measured over all time scales from 3 to
100 time steps using variance growth exponents after
Inchausti and Halley (2002), with each of SDL, CV
and PV as metrics. Variance exponents g measure
increase in variability over time quantified as regression
slope of log variability against log time scale g�/0
indicates white noise; 0B/gB/1 indicates decelerated
increasing variance; g�/1 indicates a random walk; g�/

1 indicates accelerating increasing variance; see In-
chausti and Halley 2002 for details). Spectral exponents
(SE; zero indicates white-noise, greater values indicate
reddening) were calculated as (negative) regression slope
of log spectral density versus log frequency from
spectral analysis (Inchausti and Halley 2002). SE
therefore provided a standard to confirm simulated
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time series met white noise criteria (SEB/j9/0.1j), and
against which to evaluate and compare CV, SDL
and PV.

Figure 4 summarizes results for each frequency of
rare events and the Cauchy distribution, for each
variability metric, clearly indicating that in all cases
both SDL and CV inappropriately show strong
increases in variation with time scale (more time�
more variation) for these stationary time series (see
also Mandelbrot 1999, Inchausti and Halley 2002; note
that while Fig. 3 indicates increasing apparent red-
dening with decreasing frequency of rare events for CV
and SDL, this is already established and not the purpose
of this analysis). In contrast, PV correctly indicates
constant variability across time scales, as confirmed by
spectral exponents. Note that, although these results
indicate PV is more appropriate than CV or SDL for
evaluating more time-more variation, spectral analysis is
the preferred method; the important result is that,
unlike CV and SDL, PV appropriately handles rare
events and is robust to non-Gaussian behaviour.

It is also important to ensure that PV behaves
appropriately for detecting true instances of more time-
more variation. Simulations were therefore conducted
for 5000 random 100 year time series generated to fit a
reddened noise model (using Fourier filtering to
produce fractional Brownian motion of a given spectral
density; after Crownover 1995). Spectral exponents SE
were again used to confirm the true spectral density of
each simulated time series (SE�/0.2; mean SE�/

0.899/0.23 SD) and PV, CV and SDL were used to
estimate more time�more variation, following the
method of Inchausti and Halley (2002), as above.
Regression slopes using PV, CV and SDL were highly
correlated r�/0.97), and like CV and SDL, PV
correctly indicated true more time�more variation,
and was highly correlated to the spectral exponent SE
(r�/0.71, pB/0.0001). Therefore, while all variability
metrics indicate true more time�more variation,
because of over-sensitivity to rare events, CV and
SDL inappropriately indicate more time�more varia-
tion for some stationary populations. In contrast, PV
was consistent with spectral analysis in each scenario
indicating its robustness to non-Gaussian behaviour.

Short-term estimates of long-term variability

A common problem in empirical ecology is that we are
often required to estimate long term patterns based on
short term data sets. Although some populations may
exhibit more time�more variation effects, it is interest-
ing to explore how variability measured in the short
term reflects long term variability of a known time
series. Given the previous analysis indicated that PV
performs well across time scales, it seemed possible that

PV could provide more accurate estimates of long term
variability from short term data sets. Therefore, for each
of the normal (mean [100,1000], SD [10,1000]),
lognormal (letter mu [0, 2], letter sigma [1, 2]) and
Cauchy (location [1000, 5000], scale parameter [10,
100]) distributions, I simulated a 100 year time series,
then randomly sub-sampled 100 times each for sample
sizes from 3 to 99. Each metric (PV, CV, SDL) was
calculated for the known (100 year) time series, and for
each sub-sample (and averaged across sub-sampling
randomizations). For each sub-sampling interval (3 to
99), the percent difference between the estimate and
known long term variability was calculated. This entire
process was repeated 1000 times for each distribution.
The results are presented in Fig. 5 and clearly indicate
that PV is substantially more accurate at estimating long
term variability from small samples in each circum-
stance. For the normal distribution (Fig. 5a), PV is
notably more accurate than SDL, whereas for the
lognormal distribution (Fig. 5b), PV is much more
accurate than CV (almost 40% for small samples) and
similarly (though to a lesser magnitude) more accurate
than SDL. Both CV and SDL are poor at estimating
long term variability for the Cauchy distribution (Fig.
5c), their accuracy only linearly increasing with time
scale, while the accuracy of PV accelerates with
increasing time scale (note the difference in the
scale of the y-axes). This clearly demonstrates that
PV is not only robust to non-Gaussian behaviour,
but further allows more accurate estimation of long
term variability from shorter term data sets. It there-
fore also allows more robust comparisons of variability
across time series/data sets of different lengths, though
this should be done in a cautionary manner, particularly
given the potential for (true) more time�more variation
effects.

Conclusions

The variability of population abundances is recognized
as one of the most important conceptual ideas in
theoretical and empirical ecology, particularly for
evaluating extinction risk and identifying, managing
and developing conservation strategies for demographi-
cally and genetically important populations. Unfortu-
nately the concept is more complex than often realised
(Pimm 1991, Gaston and McArdle 1994), putting
many published analyses in question (McArdle et al.
1990). Biological systems can exhibit a wide diversity of
behaviour for which standard statistical approaches may
not always be appropriate. The analysis presented in
here certainly indicates PV has many appealing proper-
ties and advantages over existing metrics, justifying
further exploration. Of course, given their underlying
assumptions are met, statistical approaches and their
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well defined distributional properties will still be
important for addressing many ecological questions.
PV is not being proposed as a mutually exclusive
approach, and will likely be most informative when

used in conjunction with other statistical and time series
techniques. Likewise, metrics like SDL and CV will no
doubt still have a place in ecological analyses; however,
for situations where consideration of rare events and
other non-Gaussian behaviour are important, or where
long term variability needs to be estimated from short
term data sets, PV provides a more appropriate and
robust metric. In addition to its conceptually simple
and intuitive approach of comparing all abundances, it
is compelling that PV is robust to a wide variety of both
‘normal’ and non-Gaussian behaviour. This provides
common ground for comparing populations under-
going different dynamics in a conceptual framework
which could also be useful for measuring stability/
variability in a wide range of other contexts and
disciplines.
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Appendix 1. Matlab equation for
automatic calculation of the proposed
metrics.

% calculates population variability, PV, from a vector
% of population abundances, P

C�/nchoosek(P,2);
y�/length(P);
Z�/nchoosek(y,2);
for m�/1:Z
Num(m)�/abs((C(m,1))-(C(m,2)));
Denom(m)�/max((C(m,1)),(C(m,2)));
Diff(m)�/Num(m)/Denom(m);
end
PV�/mean(Diff)
clear C; clear Denom; clear Num; clear Z; clear i;

clear y; clear Diff;
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